

 Navigation

 	
 index

 	jobCrawler latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/jobcrawler/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/jobcrawler/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	jobCrawler latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

gitJOB/docs/ReactInES6.html

 Navigation

 		
 index

 		jobCrawler latest documentation »

React in ES6 / ES2015

React Component in ES5:

var App = React.createClass({
 render: function() {
 return (
 <div>
 <Navigation />
 <RouteHandler />
 </div>
);
 }
});

module.exports = App;

React Component in ES6 / ES2015:

export class App extends React.Component {
 render() {
 return (
 <div>
 <Navigation />
 <RouteHandler />
 </div>
);
 }
}

Autobinding in ES6?

This article [https://facebook.github.io/react/blog/2015/01/27/react-v0.13.0-beta-1.html#autobinding] specifies that with React 0.13 React Components using ES6 classes no longer autobind this to your non React methods.

So a React Component in ES5 such as this:

var Login = React.createClass({
 getInitialState: function() {
 return {
 user: UserStore.getState().user
 };
 },

 componentDidMount: function() {
 UserStore.listen(this._onChange);
 },

 componentWillUnmount: function() {
 UserStore.unlisten(this._onChange);
 },

 _onChange: function() {
 this.setState({
 user: UserStore.getState().user
 });
 }

 render: function() {
 ...
 }

});

Can be written in ES6 as follows:

export default class Login extends React.Component {
 constructor(props) {
 super(props);
 this.state = UserStore.getState();
 }

 componentDidMount() {
 UserStore.listen(this._onChange);
 }

 componentWillUnmount() {
 UserStore.unlisten(this._onChange);
 }

 // A neat trick!
 // arrows share the same lexical this as their surrounding code.
 _onChange = () => {
 this.setState({
 user: UserStore.getState().user
 });
 }

 render() {
 ...
 }
}

Alternatively, you could write it as such:

export default class Login extends React.Component {
 constructor(props) {
 super(props);
 this.state = UserStore.getState();
 // Explicitly prebinding the method in the constructor
 this._onChange = this._onChange.bind(this);
 }

 componentDidMount() {
 UserStore.listen(this._onChange);
 }

 componentWillUnmount() {
 UserStore.unlisten(this._onChange);
 }

 _onChange(){
 this.setState({
 user: UserStore.getState().user
 });
 }

 render() {
 ...
 }
}

Stateless Functions

There is also an exciting way to write React Components as stateless functions (provided...you don’t handle state). Read more here [https://facebook.github.io/react/docs/reusable-components.html#stateless-functions].

Instead of writing a loooong component in React that only renders props, as follows:

class WATTT extends React.Component {
 render() {
 const {props1, props2, props3} = this.props;
 return (
 <div>{props1} {prop2} {prop3}</div>
);
 }
}

Choose instead to write it as such:

const WATTT = ({props1, props2, props3}) => <div>{props1} {prop2} {prop3}</div>

Much simpler, yeah?

Questions

		Why do you use babel-loader instead of jsx-loader with the –harmony flag set in webpack?
This issue [https://github.com/webpack/react-starter/issues/48] was discussed here. jsx-loader supports a lot less ES6 than babel.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

gitJOB/docs/Redux.html

 Navigation

 		
 index

 		jobCrawler latest documentation »

Redux with React

There are a million good resources out there for learning Redux.
If you want to learn more, just go to the docs [http://redux.js.org/].
Trust me, it’s good. Otherwise, read the code yourself!

This README is here is to explain some of the syntax we opted to use.

We recently switched to using mapDispatchToProps in our react-redux connect
function. This is an implementation detail, but I hope the explanation below
provides a bit more clarity if you are confused.

connect([mapStateToProps], [mapDispatchToProps], [mergeProps], [options])

Examples out in the wild typically only maps State to props, and expect a
dispatch prop to be passed into the component.

import { someAction } from 'actions';

class Life extends React.Component {
 constructor(props) {
 super(props);
 this.doSomething = this.doSomething.bind(this);
 }

 doSomething() {
 this.props.dispatch(someAction());
 }

 render() {
 return (<div onClick={this.doSomething}>{this.props.todos}</div>
 }
}

function mapStateToProps(state) {
 return { todos: state.todos };
}

export default connect(mapStateToProps)(Life);

It makes sense and gives clarity to what the Container component is doing.
However, we’ve found that using mapDispatchToProps is a better way forward
because:

		It takes away the redux implementation away from this component. It becomes a
simple component that only expects func as props when an action is triggered.

The example below will illustrate what I mean:

import { someAction } from 'actions';

class Life extends React.Component {

 render() {
 return (<div onClick={this.props.someAction}>{this.props.todos}</div>
 }
}

function mapStateToProps(state) {
 return { todos: state.todos };
}

export default connect(mapStateToProps, { someAction })(Life);

Read more
here [https://github.com/reactjs/react-redux/blob/master/docs/api.md#inject-todos-and-all-action-creators] to understand.

Alternatively, you can write a mapDispatchToProps function if you wish to make
your code more readable.

import { someAction } from 'actions';

class Life extends React.Component {

 render() {
 return (<div onClick={this.props.someAction}>{this.props.todos}</div>
 }
}

function mapStateToProps(state) {
 return { todos: state.todos };
}

function mapDispatchToProps(dispatch) {
 return {
 someAction: () => dispatch(someAction)
 };
}

export default connect(mapStateToProps, mapDispatchToProps)(Life);

 © Copyright 2016.
 Created using Sphinx 1.3.5.

gitJOB/docs/databases.html

 Navigation

 		
 index

 		jobCrawler latest documentation »

Databases

How do I run this app without a database?

Change the following:

/*
 * server/config/appConfig.js
 */

DB_TYPE: process.env.DB_TYPE || DB_TYPES.NONE

How do I switch to a different database?

Currently, we support these DB_TYPES:

		MONGO

		POSTGRES

		NONE

We abstracted the DB config in appConfig to enable you to require the correct files if you were to use a different database, e.g. postgresql.

Please read this PR [https://github.com/choonkending/react-webpack-node/pull/190#issuecomment-210273745] for more context.

/*
 * server/config/appConfig.js
 */

DB_TYPE: process.env.DB_TYPE || DB_TYPES.YOUR_DB

You will need to add a folder after /db with [may] contain the following ORM specific code:

		models

		controllers

		passport logic

		connecting to the database

		session stores

		deserialising users

##Setting up Postgres

Install Postgres as your database:

Update brew formulae
brew update
Install Postgres
brew install postgres

Run your Postgres server

postgres -D /usr/local/var/postgres

Setup your postgres database

createuser root
createdb react_webpack_node_development # or test/production
npm run sequelize db:migrate

Installing on Heroku

https://devcenter.heroku.com/articles/heroku-postgresql#provisioning-the-add-on
heroku addons:create heroku-postgresql:<PLANNAME> --as POSTGRES_DB
heroku run bash
once in bash
npm run sequelize db:migrate
exit heroku bash

 © Copyright 2016.
 Created using Sphinx 1.3.5.

gitJOB/docs/GettingStartedWithDigitalOcean.html

 Navigation

 		
 index

 		jobCrawler latest documentation »

Getting Started with Digital Ocean

		Create a Droplet on your Digital Ocean dashboard. Eg:

		Droplet hostname: Example

		Size: 5/mo

		Droplet region:

		Select image: Ubuntu 14.04 x64

		Add your SSH key. Read more here [https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocean-droplets]

		Remember to add Private Networking, it will be used later if you follow this node.js guide [https://www.digitalocean.com/community/tutorials/how-to-set-up-a-node-js-application-for-production-on-ubuntu-14-04] later on

		If you wish to secure your droplet even further, read on:

a. ssh into your server as root

b. Create a new user:

It’s actually not a good idea to ssh in as root on a regular basis, because of how much power root has. It makes it easy to make destructive change, even by accident!

adduser demo

c. Give root privelleges to the new user account.
gpasswd -a demo sudo

So if you need to run a command with root privelleges, type sudo <command>
d. Add public key authentication

* Manually install the public key. Copy your public key

* Switch from `root` to your new user. `su - demo`

* Make a directory and restrict its permissions:

  ```
    mkdir .ssh
    chmod 700 .ssh
  ```

* `vim .ssh/authorized_keys`

* `chmod 600 .ssh/authorized_keys`

* `exit` to return to `root` user

* Configure the ssh daemon:
`vim /etc/ssh/sshd_config`
Edit `PermitRootLogin yes` to become `PermitRootLogin no`

* Reload your ssh `service ssh restart`

READ more in Reference 2 and 3

FAQ

		ssh root@<ip-address> still prompts me for my password, even when I have entered my ssh prior to this!

You can try editing your ~/.ssh/config file to have this additional entry:

Host digitalocean
 HostName <Digital Ocean IP Address>
 User <user>
 IdentityFile ~/.ssh/<rsa_key_name>

The next time you can just ssh digitalocean and you’re in!

Reference

		How to connect to your droplet with SSH [https://www.digitalocean.com/community/tutorials/how-to-connect-to-your-droplet-with-ssh]

		How to use ssh keys with droplets [https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocean-droplets]

		Initial Server setup with Ubuntu 14.04 [https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-14-04]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

gitJOB/docs/css.html

 Navigation

 		
 index

 		jobCrawler latest documentation »

CSS

We recently removed sass from the boilerplate, and opted in several postcss plugins:

		postcss-import

		postcss-mixins [unused]

		postcss-simple-vars

		postcss-nested

		autoprefixer

		postcss-reporter

Please refer to this [https://github.com/choonkending/react-webpack-node/issues/150] for more reading.

Note: This change to postcss is experimental, as there might be features you want from a preprocessor such as sass that might not be supported - unless you write a plugin yourself.

CSS module questions

How do I reuse a class?

/* Within the same file */
.borderLine {
 border-bottom: 1px solid #000;
}

.actualClass {
 composes: borderLine;
}

/* From a different file */
.actualClass {
 composes: borderLine from './border.css';
}

How do I reuse a value?

/* Within the same file */
@value color-white: #fff;

.actualClass {
 color: color-white;
}

/* From a different file */
@value color-white from './colors.css';
.actualClass {
 color: color-white;
}

Suggested Readings;

		Composition in CSS Modules [https://github.com/css-modules/css-modules/blob/master/docs/composition.md]

		CSS Modules by Glen Maddern [http://glenmaddern.com/articles/css-modules]

		CSS modules values [https://github.com/css-modules/postcss-modules-values]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		jobCrawler latest documentation »

SWCH (switch)

SWCH helps you organize your job search by integrating job postings with workflow management.

		Technology Stack

		Client Framework

		Server Setup

		Database

		Future Features

Technology Stack, APIs, and Third-party tools

		React [https://facebook.github.io/react-native/]

		Redux

		Node.js & Express [http://expressjs.com/]

		MongoDB [https://www.mongodb.org/] and Mongoose [http://mongoosejs.com/]

Client Side: React Native

		Run npm install to install all dependencies

$ npm install

Server Setup: Node & Express

All files for the server can be found in the server folder. The server also makes use of the database helper functions in db/db.js.

Database: MongoDB & Mongoose

The Mongodb database has 4 tables: postings, applications, companies, and users (schema can be found in db/config.js).

		

		

Database helper functions can be found in db/db.js. These helper functions are used by the request handlers in server/config/requestHandler.js

Future Features

Full feature

		Copy Wealthfront’s Engineering graph instead to display your job application activity

		

Front-end

		Modal contexts depending on where you are in pipeline

		Queue animation + solve the server-window issue

		Pagination feature instead of infinite scroll

		Drag and drop functionality a la TRELLO

		Anime.JS library integration

		Collapsible bars

		Integrate contacts into new user flows

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up-pressed.png

gitJOB/docs/SaltStackonDigitalOcean.html

 Navigation

 		
 index

 		jobCrawler latest documentation »

Salt Stack

I recommend you read this walkthrough [http://docs.saltstack.com/en/latest/topics/tutorials/walkthrough.html] and this guide to setting up salt on Ubuntu [https://www.digitalocean.com/community/tutorials/how-to-install-salt-on-ubuntu-12-04]. I am really excited about using SaltStack, and I hope this guide can help many of you out there.

This tutorial will help you with installing salt on your Ubuntu Droplet, configuring a salt-minion to run a NodeJS express server and to ensure that the server is running.

Tell me what is salt now!

The backbone of Salt is the remote execution engine, which creates a high-speed, secure and bi-directional communication net for groups of systems. On top of this communication system lies a configuration management system called Salt States.

Basic terminology

Salt functions on a master/minion topology. A master server acts as a central control bus for the clients, which are called minions. The minions connect back to the master.

Instructions

		Firstly, ssh into your droplet. If you have trouble with this, read GettingStartedWithDigitalOcean [https://github.com/choonkending/react-webpack-node/blob/master/docs/GettingStartedWithDigitalOcean.md]

		Install the SaltStack PPA (personal packaged archives) for Ubuntu - I’m using 14.04.
i. sudo apt-get install python-software-properties

ii. sudo add-apt-repository ppa:saltstack/salt

iii. Update the apt package database:
sudo apt-get update

iv. Install the salt-master:
sudo apt-get install salt-master

v. Install the salt-minion:
sudo apt-get install salt-minion

vi. Since the salt master and minion are running on the same host, edit /etc/salt/minion to uncomment and change from master: salt to master: localhost

vii. Restart salt-minion service: service salt-minion restart

viii. List all the Minion keys your salt Master knows: salt-key -L
The Minion’s key should now show up under Unaccepted Keys.

Accepted Keys:
Unaccepted Keys:
<Your droplet's name>
Rejected Keys:

ix. Have the salt-master accept the minion’s public key. salt-key -a <droplet name>

x.

The following keys are going to be accepted:
Unaccepted Keys:
<droplet name>
Proceed? [n/Y] Y
Key for minion Map-1 accepted.

xi. Now you can check if your minion responds: salt '*' test.ping.
The * is the target, which specifies all minions. test.ping tells the minion to run the test.ping function. In the case of test.ping, test refers to a execution module. ping refers to the ping function contained in the test module. Execution modules are the workhorses of Salt. They do the work on the system to perform various tasks, such as manipulating files and restarting services.

Note: If you find yourself having to type sudo for every single command because you are not root but are a user with root privelleges:

		Edit your ``/etc/salt/masterto changeuser: roottouser: `

		sudo chown -R map /etc/salt /var/cache/salt /var/log/salt /var/run/salt

		Try running salt '*' test.ping without sudo now
Read more [http://docs.saltstack.com/en/latest/ref/configuration/nonroot.html].

Running your commands

You can see what functions are available for execution by running the salt '*' sys.doc command

Preparing your droplet’s salt state

Salt States, or the State System is the component of Salt made for configuration management.
The state system is built on SLS(SaLt State) formulae. These formulae are built out in files on Salt’s file server.

States are stored in text files on the master and transferred to the minions on demand via the master’s File Server. The collection of state files make up the State Tree.

		To start using a central state system in Salt, the Salt File Server must first be set up. Edit the master config file (/etc/salt/master) and uncomment the following lines:

file_roots:
 base:
 - /srv/salt

		Restart the Salt master in order to pick up this change: service salt-master restart

		Prepare the top file:
On the master (which is the same droplet in our case), create a new file called top.sls in /srv/salt:

base:
 '*':
 - webserver

The top file is separated into environments. The default environment is base. Under the base environment a collection of minion matches is defined; for now simply specify all hosts (*).

Now in the same directory (srv/salt in our case), create a file named webserver.sls, containing the following:

npm: # ID declaration
 pkg: # state declaration
 - installed # function declaration

The first line, called the ID declaration, is an arbitrary identifier. In this case, it defines the name of the package to be installed.

The second line, called the State declaration, defines which of the Salt States we are using. In this case, we are using the pkg state to ensure that a given package is installed.

The third line, called the Function declaration, defines which function in the pkg state module to call.

Further explanation on salt states

TODO > Fill more info in

Please refer to my example repo here [https://github.com/choonkending/salt-states] for the salt states.

salt '*' state.highstate

Read more

		pkg.installed [http://docs.saltstack.com/en/latest/ref/states/all/salt.states.pkg.html]

		pkgrepo.managed [http://docs.saltstack.com/en/latest/ref/states/all/salt.states.pkgrepo.html]

		file [http://docs.saltstack.com/en/latest/ref/states/all/salt.states.file.html]

		Installing nodejs v012 on Ubuntu [https://nodesource.com/blog/nodejs-v012-iojs-and-the-nodesource-linux-repositories]

		Salt formula [https://github.com/saltstack-formulas/node-formula]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

search.html

 Navigation

 		
 index

 		jobCrawler latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

